10-EPI-CUBEBOLXYLOSIDE FROM IPHIONA SCABRA

M. ABDEL-MOGIB, J. JAKUPOVIC and A. M. DAWIDAR*

Institute for Organic Chemistry, Technical University of Berlin, D-1000 Berlin 12, F.R.G.; *Chemistry Department, Faculty of Science, Mansoura University, Mansoura, Egypt

(Received 13 December 1988)

Key Word Index—Iphiona scabra; Compositae; sesquiterpene xylosides; 10-epi-cubebol, α-elemol.

Abstract—The aerial parts of *Iphiona scabra* afforded in addition to some previously isolated xylosides two new ones derived from 10-epi-cubebol and α -elemol. The structures were elucidated by NMR spectroscopy.

INTRODUCTION

Iphiona scabra is the only species from the small genus which has been investigated chemically. In addition to a highly complex mixture of sesquiterpene xylosides [1] some flavanoids [2] were isolated. We now report the isolation of further compounds from this species.

Table 1. ¹H NMR spectral data of 1 and 2 (400 MHz, CDCl₃, δ-values) and ¹³C NMR spectral data of 2, cubebol and epi-cubebol

Н	1	2	C	2†	Cubebol‡	epi-Cubebol‡	Multi- plicity
1	5.76 dd (10.5), (17.5)		1	33.5	33.4	34.8	s
2	\[\begin{cases} 4.88 \ d \ (17.5) \\ 4.87 \ d \ (10.5) \end{cases} \]	$\begin{cases} 1.70 \ m \\ 1.50 \ m \end{cases}$	2	30.2	29.6	39.7	t
3	{ 4.80 br s } 4.56 br s	{ 1.50 m 1.30 m	3	34.9	36.3	36.6	ŧ
5	1.92 m	0.84 d (3.5)	4	87.6	80.3	80.9	S
6	1.4 m	0.73 dd (3.5, 2)	5	36.4	39.1	39.8	d
7	*	1.28 m	6	21.6	22.6	25.3	d
8	*	$\begin{cases} 1.15 \ m \\ 1.07 \ m \end{cases}$	7	42.1	44.1	44.6	d
7	*	∫ 1.30 <i>m</i> { 1.21 <i>m</i>	8	19.3	26.5	27.0	t
10		1.92 ddq (2, 4.5, 7)	9	28.8	31.7	31.8	t
11		1.64 ddq (5, 7, 7)	10	29.4	30.8	30.2	d
12	1.20 s	0.97 d (7)	11	33.6	33.6	33.7	d
13	1.15 s	0.94 d (7)	12	19.9	20.0	20.0	q
14	0.96 s	0.97 d (7)	13	19.2	19.2	19.2	q
15	1.69 br s	1.27 s	14	17.2	18.7	19.8	q
ľ	4.67 d (7)	4.68 d (7)	15	27.7	28.0	24.3	q
2′	4.89 dd (7, 9)	4.89 dd (7, 9)	1'	98.0 d			
3′	5.17 dd (9, 9)	5.12 dd (3, 9)	2'	71.3 d			
4′	4.94 ddd (5, 9, 9)	4.93 ddd (5.5, 9, 9)	3'	71.8 d			
5'1	4.09 dd (5, 12)	4.11 dd (5.5, 12)	4′	69.3 d			
5'2	3.31 dd (9, 12)	3.32 dd (9, 12)	5'	61.8 t			
OAc	2.01, 2.02, 2.04 s	2.01, 2.02, 2.04 s	OAc	170.1 s, 169.9 s, 169.3 s, 20.7 (3 ×) q			

^{*} Obscured.

[†]Assigned by 2D-hetero correlated spectrum.

[‡]Taken from refs [3, 4].

RESULTS AND DISCUSSION

The ¹H NMR spectrum of the polar fraction of the aerial parts of *Iphiona scabra* indicated a mixture of 2-O-acetates of sesquiterpene xylosides. After acetylation and separation, two new compounds (1 and 2) were obtained in addition to the known xylopyranoside triacetates of α -, β - and γ -eudesmol [1], 5,6-dehydro- α -eudesmol and 3α -acetoxy-11-hydroxy-iso-iphiona-4-one.

The structure of 1 followed from the 1H NMR spectrum which in addition to the xylopyranoside triacetates signals showed those typical for an elemane derivative. Two methyl singlets at $\delta 1.15$ and 1.20 for a hydroxy-isopropyl group indicated the presence of an elemol. The NOE between H-1 and H-5 and absence of an effect with H-5 by irradiation of H-14 required the proposed stereochemistry. Thus 1 is α -xylopyranoside triacetate of α -elemol.

The structure elucidation of 2 turned out to be more difficult. From the ¹H NMR spectrum the presence of an α-xylopyranoside triacetate was deduced and the ¹³C NMR spectrum revealed a tricyclic aglycone. By spin decoupling all signals were assigned leading to a sequence as in cubelol. As the chemical shifts of some signals in both the ¹H and ¹³C NMR spectra showed differences to those of cubelol and 4-epi-cubebol, an isomer, probably at C-10, was likely. This was confirmed by NOE experiments. In particular the effects between H-5, H-10 and H-15 were conclusive and settled the stereochemistry at C-4 and C-10. Further effects were observed between H-6, H-11, H-12 and H-13 but no effect was seen with H-5. This indicated their trans-orientation which already followed from the small coupling constant $(J_{5,6}=3.5 \text{ Hz})$. In Table 1 the ¹³C NMR data of cubebol and 4-epi-cubebol [3, 4] are added for comparison.

EXPERIMENTAL

The air-dried aerial parts (850 g, collected in April 1987 at Sinai on Dahab-Sharm-el-Sheikh road, voucher deposited in Herbarium of Botany Department, University of Cairo, Egypt) were extracted with petrol- $E_{12}O$ -MeOH (1:1:1) and the extract obtained separated by CC (silica gel). The most polar fraction was acetylated (Ac₂O, reflux, 3 hr) and separated again by MPC into three fractions. HPLC of one-fifth of the fraction 1 (RP 8, MeOH-H₂O, 17:3) gave 7 mg α -, 3 mg β - and 8 mg γ -eudesmol- $[\alpha$ -xylopyranoside-triacetate], 5 mg 1 (R_1 9.6 min) and 16 mg 2. One-tenth of the fraction 2 gave 20 mg α -, 3 mg β - and 7 mg γ -eudesmol- $[\alpha$ -xylopyranoside-triacetate] as well as 5 mg 5.6-dehydro- α -eudesmol- $[\alpha$ -xylopyranoside-triacetate]. Fraction 3 gave 40 mg 3α -acetoxy- 11-hydroxy-iso-iphiona-3-one- $[\alpha$ -xylopyranoside-triacetate].

 α -Elemol-[α -xylopyranoside-triacetate] (1). Colourless oil; IR $\nu_{max}^{\rm CCl}$ cm⁻¹: 1760, 1230 (OAc); MS m/z (rel. int.): 259 [M-C₁₅H₂₅O]⁺ (4), 163 (3), 147 (3), 121 (4.5), 81 (100), 69 (98), 55 (94).

10-epi-Cubebol-[α -xylopyranoside-triacetate] (2). Colourless oil; IR $\nu_{\rm mas}^{\rm CCl_s}$ cm $^{-1}$: 1760, 1230 (OAc); MS m/z (rel. int.): 480.272 [M] $^+$ (0.2) (calc. for C $_{26}$ H $_{40}$ O $_{8}$: 480.272), 259 [M - C $_{15}$ H $_{25}$ O] $^+$ (16), 205 [C $_{15}$ H $_{25}$] $^+$ (75), 199 [259 - AcOH] $^+$ (17), 161 (35), 157 [199 - ketene] $^+$ (40), 59 (100); [α] $_{28}^{\rm PS}$ - 59° (CHCl $_{3}$; c 1.2).

REFERENCES

- El-Ghazouly, M. G., El-Sebakhy, N. A., Seif El-Din, A. A., Zdero, C. and Bohlmann, F. (1987) Phytochemistry 26, 439.
- Ahmed, A. A. and Mabry, T. J. (1987) Phytochemistry 26, 1517.
- Suzuki, M., Kowata, N. and Kurosawa, E. (1981) Bull. Chem. Soc. Jpn 54, 2366.
- Bowden, B. F., Coll, J. C. and Tapiolas, D. M. (1983) Aust. J. Chem. 36, 211.